

RX Reference Receiver Power requirements Tom Palkert (Macom)

Nov 2019

Palkert_3ck_03a_1119

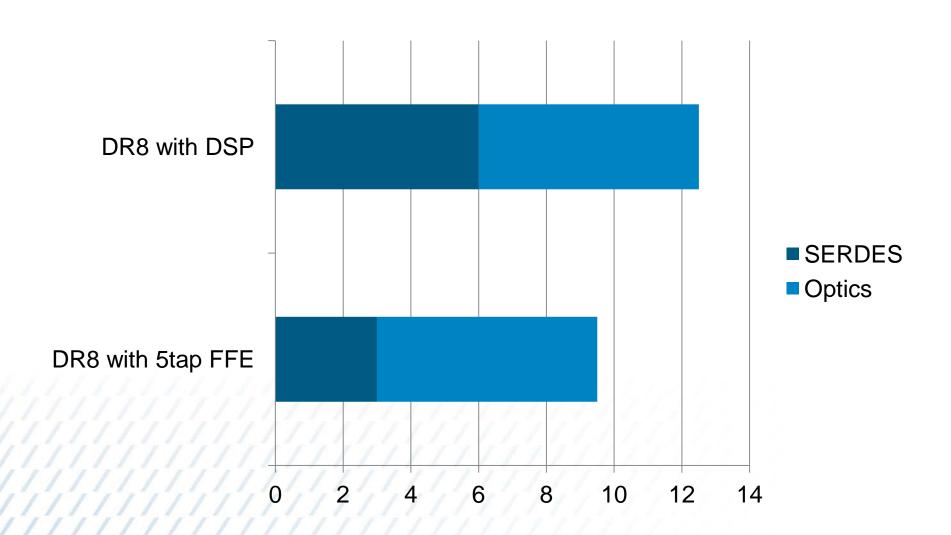
Contributors: Tom Palkert (Macom) Andreas Bechtolsheim (Arista) John Huang (CIG)

Summary:

- Reduced power is vital to 400G data centers
- Module power is important
- Power savings = \$

Data Center operator requirements

- > What is the most important issue that needs to be addressed to enable 400G in the data center
 - Power, Power, Power


Brian Welch data

- > Welch_3ck_01_0918: Power considerations for 400GAUI-4
- > Summary slide:
 - Assuming 2x400G solutions are desired then <u>very little power is available</u> for the 400GAUI-4 electrical I/O
 - Taking all reasonable steps to minimize module side power consumption
 in a 400GAUI-4 electrical I/O standard would increase the odds of 2x400G
 modules being possible

Module power for 8x100-DR-8

Note: DSP power assumes 5nm cmos

Annual Power savings

> 8760 hours/year

Data Center size (sq ft)	Average annual cost/kw	# of lanes/data center	8 lane DR8 module power savings (W)	Total annual power savings
500-5,000		6,000	3000	.26 Mw
5,000-10,000		12,500	6250	.55 Mw
10,000-25,000		25,000	12500	1.1 Mw
25,000-50,000		50,000	25000	2.2 Mw
> 50,000		100,000	50000	4.4 Mw
Hyperscale		250,000	125000	11 Mw

Lets learn from history

- > 10G optical modules moved to high volume when a low cost/low power/non-retimed optical module was available in the market.
- > The market will not support a transition from:
 - 10G Non-Retimed
 - 25G CTLE only
 - 50G CTLE only
 - 100G DSP

Doom and Gloom scenario

- > We define a high power reference rx to support legacy channels
- > Large data centers define a low power/cost proprietary solution to save power/\$.

Conclusions

- > Good engineering saves \$
- > Lets use 100G channels with a low power reference rx.